Alfer Engineering started its business operations in 1984, and today, with a total area of 20,000 m² in Ankara 1st Industrial Zone of which 14,000 m² is indoor, it continues its activities with a consciousness to add value to the industry by its every-day improving vision.

With a team of experts in their field, it acts with an awareness of being a solution partner and a reliable partner for industrial plants.

Although it is one of the leading fan manufacturers in the domestic market with its strong structure, and expanding its foreign sales activities each and every year.

Our work partnership starting with pre-sales services provided to the customers such as project services, technical consulting, exploration visits and on-site detection of problems and needs, and with product sales is also supported by after-sales services such as periodic maintenance and instant service provision.

Thanks to the standard production methods and the use of standard components in the production, Alfer is capable of offering bag filters and fans of a high level of quality and high efficiency, with terms of affordable prices and short delivery times.

Alfer’s high experience in the custom design tailored to the customer’s specifications enables Alfer to solve technically complex problems and to offer customers very flexible solutions.

Alfer’s R&D department ensures continuous development of the products and spares no efforts to meet specific demands of the customers.

Our Corporate Vision is to become a unique company which behaves in conformity with the laws and ethical rules within the sector it operates, which adopts a participatory and transparent management style, which keeps customer-integration always in the foreground, which invests continuously in research and development by ascribing importance to innovation and creativity, which recognizes their responsibility towards the society, state and environment and acts in this direction, and which alleviates their objectives by moving forward their vision every day.

Being the leading company in the sector today in our country, ALFER aims to have a say in the world markets by improving itself day by day.
APPLICATION FIELDS OF ALFER FANS

- Cement Factories
- Power Stations
- Iron and Steel
- Integrated Wood, MDF, and Particleboard Industry
Cement Factories

Modern cement production technology incorporated the harsh working conditions within it. Only those equipment that aim the best performance and lowest operating costs in these heavy-duty operation conditions are able to come to the foreground in the sector. In order to provide the fans that will meet the requirements of the performance and low operating costs in these heavy-duty conditions encountered in the integrated cement plants, it is necessary to offer unique solutions to the work sites. ALFER is capable of meeting the special needs of the cement industry under the special circumstances by means of its quality, its appropriate solutions and its reliability.

Furnace ID (Induced Draft) Fans: These are critical process fans that are used at temperatures with the peak value as high as 500°C and that require the choice of materials accordingly, with specific selection and production methods. As the continuity is the primary concern in the system, the failure and interruption tolerance of these fans are low.

Raw Mill Fans: These are high pressure fans with special blade angles, for which measures against corrosion have been taken as the operating medium is a corrosive and adhesive powder.

Booster Fans: These fans have special panel and blade designs, for which measures against corrosion have been taken as they are used to transfer highly abrasive dusts with a high temperature from the cyclone located at the outlet of the clinker cooler unit.

Filter Fans: These are the fans used in de-dusting systems requiring high flow and pressure capabilities, with blade designs of high static efficiency.

Cement and Coal Mill Fans: These are single-suction or double-suction fans designed with a special suction hopper in order to increase the suction capacity.

Clinker Cooling Fans: These are designed to operate at very different pressure and temperature ranges, with the particular purpose of reducing clinker temperatures. They are high-temperature fans for which wear-resistant measures have been provided.

Iron and Steel

Today, one of the most important applications incorporating the applications of heavy-duty industrial fans is iron and steel sector. Moving the air that has heavy dust load and high abrasion values in a wide range of volumes requires that the rotor should be meet the demanding requirements of the mechanical design.

Furnace Hot Gas Fans: The fans used to carry the hot gases from the furnace are designed in accordance with the high furnace temperatures and high wear values.

Dedusting System Fans: These are the fans used in the dedusting systems requiring high flow rate and pressure capacities, and have blade designs with a high static efficiency.

Sinter and Pellet System Fans: These are special purpose fans designed to work in very wide pressure and flow ranges with the purpose of reducing the temperature of the sinter area. They are high temperature fans, resistant to high abrasion values of the sinter and provided with wear-resistant measures.

Coke Gas Fans: These are high-pressure fans. Due to the necessity of moving the gases to long distances, body strengths of these fans are high, and they have a special sealing design to ensure the tightness of the poisonous carbon monoxide contained in the carried gas.

Pressure Booster Fans for Steel Mill Gas: This is a high-pressure medium-temperature fan used to pressurize the mixture of a blast furnace gas and oxygen gas.

Large-capacity fans have a key importance to remove the heats emerging during sintering, pelletizing and dust collection systems as well as the heat resulting from the heat treatment and annealing processes performed in the rolling mill environment. Cooling fans produced by Aller Engineering plays an important role also in the transfer of the fresh air flow to the cooling units in the sintering plants.

Alfer Engineering also furnishes the said fans with silencer equipments and provides support for achieving the acoustic standards envisaged by the operators. Minimum pressure losses are taken into account while the operating values of the system are adjusted with specially designed valves.
Alfer, with its wide experience in the wood and MDF industry, continues to offer a strong cooperation regarding fans, by supplying highly reliable and highly efficient fans that minimize downtimes. Hot oil fans and flue gas fans, compatible with high temperature and high pressure conditions, are manufactured for the boiler projects and related processes in this sector. The fans used to supply the combustion air required by the system such as primary combustion air fan, secondary combustion air fan, gas circulation fan, cooling fan for the mixing room, and furnace cooling fan require such fan designs that ensure high pressure and high capacity in addition to low operating costs. In situations where dust density, high corrosion and burning hazards are involved such as edge cutting transport fan, emery powder combustion air fan and reject line suction fan (faulty cake fan), forward curved fans without ronde and with special blade angle are used, which present no risk of burning and jamming.

With respect to meeting of the industry’s needs, we precisely produce solutions suitable to the projects. Along with the aspirator fan for the drying system, the fans manufactured to meet the demands for dedusting the bag filter fans are also included in our product range, and thus, we have been continuing to serve as a reliable supplier to the wood industry for many years.

Power plant

The fuels used by the thermal power plants in general are natural gas, liquid fuels (fuel oil, diesel oil), and lignite and anthracite coals. High-pressure fans are used in the transportation of pulverized coal and flying ashes emerging during the combustion.

Integrated wood, MDF and Particleboard Industry

The fuels used by the thermal power plants in general are natural gas, liquid fuels (fuel oil, diesel oil), and lignite and anthracite coals. High-pressure fans are used in the transportation of pulverized coal and flying ashes emerging during the combustion.

The fuels used by the thermal power plants in general are natural gas, liquid fuels (fuel oil, diesel oil), and lignite and anthracite coals. High-pressure fans are used in the transportation of pulverized coal and flying ashes emerging during the combustion.

The fuels used by the thermal power plants in general are natural gas, liquid fuels (fuel oil, diesel oil), and lignite and anthracite coals. High-pressure fans are used in the transportation of pulverized coal and flying ashes emerging during the combustion.

The fuels used by the thermal power plants in general are natural gas, liquid fuels (fuel oil, diesel oil), and lignite and anthracite coals. High-pressure fans are used in the transportation of pulverized coal and flying ashes emerging during the combustion.

The fuels used by the thermal power plants in general are natural gas, liquid fuels (fuel oil, diesel oil), and lignite and anthracite coals. High-pressure fans are used in the transportation of pulverized coal and flying ashes emerging during the combustion.

The fuels used by the thermal power plants in general are natural gas, liquid fuels (fuel oil, diesel oil), and lignite and anthracite coals. High-pressure fans are used in the transportation of pulverized coal and flying ashes emerging during the combustion.

The fuels used by the thermal power plants in general are natural gas, liquid fuels (fuel oil, diesel oil), and lignite and anthracite coals. High-pressure fans are used in the transportation of pulverized coal and flying ashes emerging during the combustion.

The fuels used by the thermal power plants in general are natural gas, liquid fuels (fuel oil, diesel oil), and lignite and anthracite coals. High-pressure fans are used in the transportation of pulverized coal and flying ashes emerging during the combustion.

The fuels used by the thermal power plants in general are natural gas, liquid fuels (fuel oil, diesel oil), and lignite and anthracite coals. High-pressure fans are used in the transportation of pulverized coal and flying ashes emerging during the combustion.

The fuels used by the thermal power plants in general are natural gas, liquid fuels (fuel oil, diesel oil), and lignite and anthracite coals. High-pressure fans are used in the transportation of pulverized coal and flying ashes emerging during the combustion.

The fuels used by the thermal power plants in general are natural gas, liquid fuels (fuel oil, diesel oil), and lignite and anthracite coals. High-pressure fans are used in the transportation of pulverized coal and flying ashes emerging during the combustion.

The fuels used by the thermal power plants in general are natural gas, liquid fuels (fuel oil, diesel oil), and lignite and anthracite coals. High-pressure fans are used in the transportation of pulverized coal and flying ashes emerging during the combustion.

The fuels used by the thermal power plants in general are natural gas, liquid fuels (fuel oil, diesel oil), and lignite and anthracite coals. High-pressure fans are used in the transportation of pulverized coal and flying ashes emerging during the combustion.

The fuels used by the thermal power plants in general are natural gas, liquid fuels (fuel oil, diesel oil), and lignite and anthracite coals. High-pressure fans are used in the transportation of pulverized coal and flying ashes emerging during the combustion.

The fuels used by the thermal power plants in general are natural gas, liquid fuels (fuel oil, diesel oil), and lignite and anthracite coals. High-pressure fans are used in the transportation of pulverized coal and flying ashes emerging during the combustion.
Other Fields of Applications

- Metallurgy Plants
- Casting Factories
- Oil and Gas Plants
- Glass Production
- Mining Plants
- Metal and Mineral Processing Industry
- Ceramic Plants
- Sugar Factories
- Food Plants
- Gypsum Limestone Plants
- Fertilizer Plants
- Waste Incineration Plants
- Chemical and Petrochemical Plants
- Zinc Plants
- Boilers
- Tunnel and Metro Applications
“Alfer” designs and manufactures single-suction, double suction and multifunctional radial fans, and takes care of its customers’ needs within a wide range of power and capacity ratings. Radial fans are manufactured by our company according to the needs of the plant through selection by a team of experts in their fields, taking into account such factors as flow, pressure, air or gas type passing through and temperature of the process intended to be used in the operating conditions of the plant.
Standard Radial Fans

Thanks to the standard production methods and the use of standard components in the production, Alfer is capable of offering radial fans of high quality level and high efficiency, with terms of affordable prices and short delivery times.

Our standard industrial fans are also designed specially according to the application fields.

Technical Specifications

- 1000-150,000 m³/h flow
- 20-2000 mm WC Total Pressure
- High Efficiency up to 86%
- Operating Temperature up to 300°C
- Guarantee for Capacity
- Single and Double-Suction Design
- Direct Coupling to Motor, Belt and Pulley Coupling, Drive Coupling
- Manufacturing Resistant to Abrasion for Dusty Air Transport
- Static and Dynamic Balancing Process performed according to DIN 19816-1 Norm in Precision Benches
- Manufacturing of Air Adjustment Dampers, Drallregler Flaps
- Proportional Control or On / Off Flap Actuators
- Manufacturing of Muffler, Compensator, and Suction Filter
High-Capacity Radial Fans

A large portion of the high-capacity fans of Alfer brand are manufactured as a special design. Alfer’s great experience in customer-specific designs enables to solve complex technical problems and to offer very flexible solutions to the customer.

Technical Specifications

• 150,000 – 1,250,000 m³/h flow
• 20-2000 mm H₂O Total Pressure
• High Efficiency up to 86%
• Operating Temperature up to 1100°C
• Guarantee for Capacity
• Heavy Industry Type Design
• Single and Double-Suction Design
• Manufacturing from Alloy Steels Suitable to the Temperature and Chemical Structure of the Fluid
• Manufacturing Resistant to Abrasion for Dusty Air Transport
• Performance Guarantee as per VDMA 24164 Norm
• Static and Dynamic Balancing Process performed according to DIN 10816-1 Norm in Precision Benches
• Annealing to Eliminate Stress After Manufacturing
• Surface Preparation by Sand-Blasting as per SA 2.5 Norm
• Air Adjustment Dampers
Alfer Engineering produces pressure ventilators of up to 3600 mm WC in order to meet the demands of its customers at the locations where they need high pressures.

The high-pressure fans manufactured with advanced know-how and with special manufacturing processes ensure a privileged position to Alfer brand in the sector.

Technical Specifications
• 1000 – 50,000 m³/h flow
• 2000-3600 mm WC Total Pressure
• Heavy Industry Type Design
• Performance Guarantee as per VDMA 24164 Norm
• Static and Dynamic Balancing Process performed according to DIN 10816-1 Norm in Precision Benches

Application fields of Alfer pressure fans
• Pneumatic conveying,
• Water aeration, melted metal, other fluids,
• Gas pressurization, combustion air,
• Air flotation (glass industry etc.)
• Other industrial processes.
Axial Fans

- Flow up to 600,000 m³/h
- Total Pressure up to 150 mm WC
- High Efficiency up to 80%
- Guarantee for the Capacity
- Static and Dynamic Balancing Process performed according to DIN 10816-1 Norm in Precision Benches
- Optional Custom Installation Design
- Manufacturing of Accessories for Suction Filter and so on.

Roof Type Ventilators
Hot Gas Circulation Ventilators
Fans with wear protection measures:

Thanks to our experience on the dust types unique to each sector, we are able to serve our customers with the right kind of wear-protection measures and with the selection of the right materials, which aim minimum operating costs.

In each sector we deal with, dust is generated both as a by-product and as a waste while the final product is produced in their systems. When it is required to return these dusts in the system or to convey it with pressurized air to a desired location, the fans used for these purposes may be exposed to serious wear and breaks. Therefore, wear protection measures are applied to the fans when the fans are designed since the air passing through the fan contains corrosive particles.

Ensuring the prolongation of the working life of the fans can be possible only by employing corrosion-resistant materials and plates as well as by protecting the sensitive areas against abrasive dusts.

The measure against wear is applied, depending on the need, by directly using a non-abrasive plate over the fan blades, on the blade mirrors, on the end sections of the blades, and on the diversion sheet covering them partially or totally, or by employing a special welding-filled coating over the plate.
Jet-Fans are used to ensure air circulation inside the road and subway tunnels, to keep under control the air pollution in the tunnel atmosphere and to provide a quality atmosphere in closed environments such as tunnels, parking lots, mining tunnels etc., and to evacuate smoke in order to create a living space for the survivors in cases of fires that can take place in indoor areas such highway tunnels. In tunnel applications, multiple jet fans are installed in series and in parallel in order to convey the air from one end to the other end of the tunnel, thus ensuring aeration or smoke extraction.

Our fans have the following features:
- High Reversible Power with 80% Reverse Thrust Rate
- They can be produced together with the silencer
- They can stand for 2 hours at F250- 250°C
Retrofit Projects

We offer, along with the production of Standard Industrial Fans, special rotors manufactured according to customer demands. Considering the operation costs, renovation of the fans is effectively preferred as the most economical method to increase the performance of the fans. Replacement of the fan rotor, renewal against wear and deterioration with a view to reduce energy consumption and to adapt the fan to the changing operating conditions ensure significant savings. Alfer successfully carries out both fan renovation works and performance increasing designs in order to increase fan efficiency.

Alfer’s retrofit works aim to achieve the following objectives:

• Implementation of performance-enhancing solutions by making flow analysis through modeling the airflow in CFD (Computational Fluid Dynamics)
• Energy saving
• Increase in the business production value
• Implementation of the latest innovations in fan technology
• Increasing the reliability of the fan
• Extending the life of the impeller rotor and blades against wear and corrosion problems.
Dampers

Dampers are used in the systems and processes for such purposes as closing a line, reducing the flow, ensuring cold start of the fans running with hot air, and partly, for saving energy. Alfer manufactures various types of dampers in order to fulfill these requirements. Industrial-type dampers are grouped as follows:

- Variable bladed inlet dampers (drallregler)
- Bladed dampers (opposite or parallel bladed)
- Throttle flaps,
- Special-type dampers

All damper types can be equipped with a manual or actuator control (electric, pneumatic).

Silencers

In the closed working environments where intensive systems are operated, high-decibel noises may occur that may cause hearing impairment for the employees and that may adversely affect the quality of life. Due to the respect we have for the people as Alfer, we use silencers as one of our system solutions in order to reduce generation of high levels of noise in the system by the fans we produce.

It is possible for us to design two types of silencers depending on the operating conditions; horizontal cylindrical type of silencers for low-capacity line applications and angular cassette-type vertical silencers for high-capacity line applications. Alfer has the full capacity to determine the most appropriate silencer capacity and model at the design stage by calculating the noise level that will be generated in the working environment.

Compensator

In situations where it is not possible to go below certain vibration levels in the design of the high-capacity and high-pressure fans, it is necessary to disconnect the connection arising from the vibration between the fan and other systems. The disconnection between these lines is ensured by using a compensator device. Depending on the system situation, we employ two types of compensators as rubber (canvas) and steel to ensure most healthy operation of the line.

Dampers

Dampers are used in the systems and processes for such purposes as closing a line, reducing the flow, ensuring cold start of the fans running with hot air, and partly, for saving energy. Alfer manufactures various types of dampers in order to fulfill these requirements. Industrial-type dampers are grouped as follows:

- Variable bladed inlet dampers (drallregler)
- Bladed dampers (opposite or parallel bladed)
- Throttle flaps,
- Special-type dampers

All damper types can be equipped with a manual or actuator control (electric, pneumatic).
Research & Development

Our company ascribes great importance to research and development during the entire manufacturing process. Our goal is to produce better quality, less energy-consuming systems and to offer these products to our customers. Our Company closely follows all the latest developments in fan technology and energy efficiency fields, for the benefit of our customers and attempts to develop new products in this direction. All these activities are carried out by our R&D department. In addition, studies are also conducted to provide new products that the shareholders of the sector is seeking for. Alfer, thanks to these capabilities which it has developed, has established an infrastructure that is capable of making both the aerodynamic and mechanical designs and analysis of the fans as well as the testing of the fans with its own sources by 100%.

Thanks to our advanced CFD (Computational Fluid Dynamics) capabilities, we can perform simulations of the fan working conditions in order to see in a computer environment how the fan will act in all the operation points.

With the CFD simulation, we can provide detailed information on the following concepts and events:

- Fluid behaviors dependent on stable regime or time
- Pressure, velocity and temperature distributions
- Heat transfer
- Single-phase and multi-phase flows
- Constant density fluids and compressible fluids
- Particles and smoke distribution

With CFD analysis, it is possible for us to calculate / perform the followings:

- Single-stage or multi-stage fan solutions
- Obtaining the characteristic curves
- Making torque and efficiency calculations
- Determination of performance values at different revolution numbers
- Making resistance calculations by transferring temperature, pressure, speed etc. distributions to the elementary software programs.
How Alfer Designs the Fans?

Using the final design inputs, Alfer performs the conceptual design of the fans with CFD simulation software program, which is an interactive conceptual design program enriched with the addition of Alfer’s unique designs correlations. The design to be made is loaded in CFD software and then, the flow analysis and the modeling of the flow inside the fan is carried out. Thus, we are able to view on our monitors what trajectory a dust particle follows and whether there is any dust accumulations on the blades, through CFD software.

When the correct conceptual design has been reached, mechanical design based simulation procedures gets started along with specific software programs. At this stage; model analyses, shaft analyses, and the analyses of the mechanical forces acting on the rotor are carried out. This way, it is possible to see any physical deformations, whether the steel material used in the production can meet the strength values and whether there are any regions in the fan exposed to extreme stress physically, and the required improvements are made if necessary.

Alfer, after having completed mechanical analysis studies as well, decides whether the fan is manufacturable or not.
How Alfer Chooses the Fans?

Fan Selection and Performance Curves

Fans consume too much energy during their operational life, which is generally dozens of times of their initial investment cost. This means that, for an operation plant, the best fan is not the one with the lowest initial investment cost but it is the efficient fan that consumes less energy while providing the desired performance. Therefore, the selection, design, manufacturing and operation of the fans should be based on lifetime cost principles.

Fans should be designed and used, as much as possible, according to the operation points as needed by the system. Thus, fan design and selection should be made in accordance with the determined flow rate and pressure and with other operating conditions.

Alfer Engineering makes the selection of the most efficient fan and prepares the fan curves appropriate for this selection, performing the necessary calculations through the software program used when making fan selection.

<table>
<thead>
<tr>
<th>BP1</th>
<th>Volume flow at fan inlet</th>
<th>Total pressure increase</th>
<th>Rotation speed</th>
<th>Shaft input Power</th>
<th>Density at fan inlet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>760,481 Am3/h</td>
<td>704 mmWG</td>
<td>990 rpm</td>
<td>1661,4 kW</td>
<td>0,790770456 Kg/m3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volumetric flow rate @ inlet</th>
<th>m³/h</th>
<th>Shaft power</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumetric flow rate @ outlet</td>
<td>m³/h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Our Production Facility

Our factory is set up on a total surface area of 20,000 m² consisting of 14,000 m² indoor area and 6,000 m² open area, and the fan projects send by Our Design Department is rapidly directed to the Production Department where the characteristic processes to be carried out for the fan are divided into categories and a task plan is prepared. In this plan, a distinct attention is paid to each fan just like a tailor’s thoroughness.

Manufactured and precisely adjusted by our expert teams utilizing latest technology measuring devices, our fans are subjected to all the necessary tests by the quality control teams, are then reported and transferred to the assembly department.

The assembled fans are then subjected to fan performance testing in order to determine whether they are conformant to the yield curves envisaged during the design stage and to verify their capacity measurements, after which they are shipped.
Alfer Aerodynamical and Mechanical Test Unit

Alfer Engineering is in a leading position in the sector thanks to the “Fan Test” center, commissioned in-house in compliance with ISO 5801 standards. Aerodynamic and mechanical properties of the fans are tested in real time under the actual operational conditions in the said Fan Test center.

With these test units, we are able to perform mechanical and capacity tests of the fans, and to directly measure shaft power of the fans, that is, the fan efficiency, with the torque meter device.

Thus, large-capacity fans are tested before shipment and thus, all the data necessary for the customer can be fully be made available without waiting for the on-site commissioning of the fans.

Capacities
- Flow rate: Maximum 1,200,000 m³/hour
- Pressure: Maximum 30,000 Pa
- Torque meter: Maximum 15,000 Nm
- Installed Motor: 1200 kW

Alfer Precision Fan Test System

This is the fan test bench set up in compliance with ISO 5801 standards, in order to reveal the accurate characteristics and to precisely measure the performances of the fans developed as a result of R&D studies.

The following measurements can be taken through this system:
- Torque
- Flow
- Pressure
- Temperature
- Vibration
- Moisture
- Decibel

As an auxiliary fan is used in the system, it possible to measure the performances of the fans in a much wider range. We are capable of measuring the efficiency of our fans by means of a torque measurement up to 10,000 Nm applied over the shaft.

Capacity
- Flow rate: Maximum 150,000 m³/hour
- Pressure: Maximum 30,000 Pa
- Torque meter: Maximum 10,000 Nm
- Installed Motor: 250 kW
Our Services

All the services to be provided with respect to research and development, consultancy and after-sale fields are offered in an innovative manner and by following the latest developments in the market, by our experienced and dynamic team who acts with the awareness of being a solution partner and with the excitement of finishing new projects.

Alfer’s engineering experts take part in all the processes carried out on the site within the scope of the installation, commissioning, training, maintenance and after-sales services, and they coordinate all the training activities deemed necessary.

Capacity Measurement Works:

It is sometimes possible that inadequate or low-energy efficiency systems can be installed during the first design of the Installed Facilities. We, as Alfer, we obtain the design data by means of the measurements carried out by our technical teams.

- Channel gas volume and speed
- Static and dynamic pressure
- Gas temperature
- Specific power consumption
- Current and voltage values passing through the motor
- Fan rotation speed
- Sound pressure levels
- Ambient atmospheric pressure
- Ambient moisture content
- Dust content of gas
- Stationary and transient vibrations

With these data we obtain and in the light of information related to the system inefficiency or incapability, we produce system solutions and we ensure energy efficiency. This way, it may be possible to produce less expensive solutions in insufficient plants without selecting costly solutions, or energy savings can be achieved in the plants with a high operating cost.

The Fields We Provide Services For

- Technical Consultancy
- Exploration visits and on-site detection of the needs
- Design
- Installation and commissioning
- Performing rotor and shaft balance adjustments
- Running CFD analysis for the sake of ensuring the aerodynamic optimization
- Technical Service and Periodical Maintenance
- Maintenance and Repair of Fans and All Our Products
- Revision and Capacity Increase in Fans
- On-Site Vibration Analysis of the Fans
- Making Flow and Pressure Measurements
- Making Sound and Vibration Measurements
- Spare Parts Supply Services
Since 1984, Alfer Engineering has obtained important references in both product supply and turnkey projects in all sectors including cement, iron and steel, integrated wood, metal, iron, machinery and construction sectors, both within the country and abroad.

Up to today, several fans of various capacities up to 1,250,000 m³/hour flow have been manufactured by our Company according to customer demands and needs, and all types of service, installation, maintenance and repair services of these products have also been given.

**Cement Factory - ESP Fan**
858,000 m³/h - 305 mm WC (Water Column)

**Cement Factory - ID (Induced Draft) Fan**
618,000 m³/h - 305 mm WC (Water Column)

**Cement Factory - Process Fan**
1,152,373 m³/h - 380 mm WC

**Cement Factory - Raw Mill Filter Fan**
700,000 m³/h - 4-450 mm WC

**Cement Factory - Clinker Cooler ESP Fan**
704,939 m³/h - 255 mm WC

**Cement Factory - Heat Exchanger Cooling Fans**
80,000 m³/h - 10 mm WC
Cement Factory - Cement Mill Filter Fan
18,000 m³/h - 36 mm WC

Cement Factory Furnace Mantle Cooling Fans
610,000 m³/h - 765 mm WC

Cement Factory Furnace Mantle Cooling Fans
18,000 m³/h - 36 mm WC

Cement Factory - Raw Mill System Fan
675,000 m³/h - 965 mm WC

Cement Factory - Rotor Manufacturing
950,000 m³/h - 430 mm WC

Cement Factory - Raw Mill System Fan
381,400 m³/h - 306 mm WC

Cement Factory - Clinker Cooler Fan
25,000-80,000 m³/h - 1100 mm WC

Cement Factory - Rotor Manufacturing
150,000 m³/h - 280 mm WC

Cement Factory - Clinker Filter Fan
750,000 m³/h - 480 mm WC

Cement Factory - Raw Mill Filter Fan
520,000 m³/h - 360 mm WC

Cement Factory - Clinker Cooling Fans
49,000-60,000 m³/h - 630 mm WC

Cement Factory - Clinker Cooler Filter Fan
505,200 m³/h - 450 mm WC

Cement Factory - Clinker Cooler Fan
25,000-80,000 m³/h - 1100 mm WC
Fertilizer Factory
110,000 m³/h - 850 mm WC

Iron and Steel Factory
480,000 m³/h - 450 mm WC (3 PCS)

Iron and Steel Factory
381,641 m³/h - 584 mm WC

Iron and Steel Factory
148,000 m³/h - 450 mm WC D PCSI

Casting Factory
150,000 m³/h - 550 mm WC

MDF Fiberboard Integrated Factory
150,000 m³/h - 480 mm WC

Cement Factory
300,000 m³/h - 250 mm WC

Glass Factory - Throat Cooling Fans
Alfer Engineering will continue, in the coming years as well, to stand by its customers through new projects in accordance with its “customer orientation” principle, and to promote its name and to increase its share both in the domestic and abroad markets with its increasing quality of service.

With this understanding, we adopt the first article of our existing quality policy, which reads: “to keep in mind customer satisfaction in all our activities, and in this respect, to deliver products and services that are conformant to nationally and internationally recognized values and standards” as our main principle, and we will continue on our way by adding new ones to our existing Certificates.
Having signed important projects with the giants of its sector in the domestic market, Alfer Inc. has also significant share in the foreign markets. In addition, our company has succeeded to become an approved supplier in cement and iron & steel industries through major contracts we made during recent years with the world’s largest engineering and equipment provider companies as well as EPC contractors. By doing this, our company will have the opportunity to take part in important projects in the world market.